Introduction

What is R ?

R is a very powerful programming environment for statistical research and data analysis, including the ability to easily generate numbers, manipulate arrays of various dimensions, and to produce very quality graphics.

Features:-

- An interactive programmed, an effective data handling and storage facility
- An array oriented. Can generate, manipulate, and operate on large array using simple commands.
- It is very graphical. A large number of high level graphics commands are available to produce publication quality graphics both on your screen and on a printer.
- An interpreted language, in which individual language expressions are read and then immediately executed.
- Well developed, simple and effective programming language which includes conditionals, loops, user defined recursive functions and input and output facilities.

General instruction:-

- A name is any combination of letters, numbers, and periods (.), and if it starts with '.' the second character must not be a digit, and can not start with number.
- File name and variables can be more than 8 characters in length.
- It is case sensitive: the object X is not the same as object x.
- Any comment after \# on a given line not execute.
- Commands are separated either by semi-colon(‘‘’), or by a new line.
- If a command is not complete at the end line, R will give a different prompt, by default + .
- Data are stored in _data. Subdirectory.

Help Facilities

R has online help system. To start the help system you have many choices:

- For general help:

1) $>$ help()
2) Click on [Help]

- For a specific command or function:

1) >help (command name), for example, >help(mean) or
2) >? Function name, for example, >? mean

- For help on characters: the argument must be enclosed in double quotes,
>help("[[")
- For searching for entries

The help.search command, for example, >help.search("linear models")

- The examples on a help topic can normally be run by

> example(topic),

Data objects

Data modes:

In R, data object is a collection of values. The modes of values are as follows:

- Logical: the values T(or TRUE) and F(FALSE).
- Numeric: real numbers, integers, decimal or scientific notation.
- Complex: complex numbers of the form a+bi ($3+1.23$ i), (a and b) are numeric.
- Character: enclosed by double quotes (") or apostrophes (‘), such a "Sara" or 'Sara'.
* If you want to know the mode of any object use mode () function

Types of data objects:

There are seven basic types of data objects in R:

1) Vector (an ordered set of values) - one way array of ordered data.
2) Matrix (two dimensions).
3) Array (a matrix with more than two dimensions)
4) Data frame (generalized matrices that allow a mix of columns with different data modes).
5) List (a list of components, where each component can be a data object of different data types).
6) Factor (categorical data)
7) Time series.

Operators in \mathbf{R}

I. Names and Assignment:

The assignment operator ($<-$ or $=$) used to associate names and values.
For example
$\mathbf{x}<-\mathbf{7}$ or $\mathbf{x = 7 \quad \# \text { stores the value } 7 \text { in an object named } x}$ You can check of the object x either by typing x or print (x).

Note:

All assignments in R remain until removed or overwritten. The $\mathbf{r m (})$ command used to remove a variable.
Example:
$>\operatorname{Print}(x)$
[1] 7
$>\operatorname{rm}(x) \quad$ \# remove x
$>x$
Error: object " x " not found.
To display the names of the objects which are currently stored within R,
> objects()
II. Arithmetic operators:

Operator	Description	Priority
()	parentheses	1
$* *$ or $^{\wedge}$	Exponentiation	2
$:$	Sequences of numbers	3
$* /$	Multiply, divide	4
+-	Add, subtract	5

III. Logical and comparison operators:

Operator	Description	Operator	Description		
$<$	Smaller than	$\&$	Factorized And		
$>$	Larger than	$!$	Factorized Or		
$==$	Equal to	$!$	Not		
$<=$	Smaller than or equal to	$!=$	Not equal to		
$>=$	Larger than or equal to				

Use of Brackets

Name of bracket	bracket	Function
Round brackets	()	For function calls like in mean(x), and to set priorities
Square brackets	[]	Index brackets in $\mathbf{x}[3]$ used to access or extracts data
Curly brackets	$\}$	Block delimiter for grouping sequences of commands as in functions or if statements

Missing values

When an element or value is "not available" or a "missing value" the data values are represented by such special symbols NA. when a value (missing data, square root or logarithm of negative number). For these cases, any operation on NA becomes NA.

The function is.na(\mathbf{x}) gives a logical vector of the same size as x with value TRUE if and only if the corresponding element in x is NA.

```
>x<-c(1:3,NA);x
>is.na(x) # is TRUE both for NA and NAN values.
[1] FALSE FALSE FALSE TRUE
>x= =NA
[1] NA NA NA NA
>sum(x)
NA
```

There is a second kind of "missing" values which are produced by numerical computation; it is called Not a Number, NAN, values.
Examples are
$>0 / 0 \quad$ \# give NAN
$>\operatorname{lnf}-\operatorname{Inf} \quad \#$ give NAN
$>x x=\operatorname{lnf} / \operatorname{lnf}$
$>$ is. $\operatorname{nan}(x x)$ \# is TRUE only for NAN values.
$>\mathrm{x}<-\mathrm{c}(1,2,3, \mathrm{NAN}, 4,5, \mathrm{NAN}, 7)$
$>\operatorname{sum}(x)$
[1] NaN
$>\log (-2)$
[1] NaN
Warning message:
NaNs produced in: $\log (x)$
$>x<-c(1,2,3, N a N, 4,5, N a N, 7)$
$>$ is.na(x)
[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

To remove missing values from x :
$>x=x[$!is.na (x)]
[1] 123457

