Statistical Inference for Counts and proportions

A) proportions parameter for one population

Null Hypothesis $\mathrm{H}_{0}: \mathrm{p}=\mathrm{p}_{0}$
Assumptions: random sample, large n and p is around .5.
R function:
binom.test (): Test hypothesis about ONE parameter p in a
Binomial (n, p) model given x , the number of successes out of n trials.
binom.test($\mathbf{x}, \mathrm{n}, \mathrm{p}=\mathbf{0 . 5}$, alternative $=$ "two. sided")
where x is number of successes, n is the number of the independent trials, p is the success probability to be tested.

Possible output for binom.test() are:

statistic	number of successes
parameters	number of trials.
p.value	the p-value.
null.value	null hypothesis value of the probability of success.
alternative	alternative hypothesis
method	a chararter vector describing the data used for the test.

Each of these values can be accessed by \$"name".
B) proportions parameters for two or more populations: Null Hypothesis $\mathbf{H}_{0}: \mathbf{p}_{1}=\mathbf{p}_{2}$ or $\mathbf{H}_{0}: \mathbf{p}_{1}=\mathbf{p}_{2}$ Assumptions: random independent samples, min (np, $\mathrm{n}(1-\mathrm{p}))>=5$

R function:

prop.test(x, n, p, alternative $=$ "two. sided", conf . level=.95, correct $=T$)
x: a vector of counts of successes or a matrix with 2 columns
giving the counts of successes and failures, espectively. n : a vector of counts of trials; ignored if ' x ' is a matrix. p : a vector of probabilities of success. The length of ' p ' must be the same as the number of groups specified by ' x^{\prime}, and its elements must be greater than 0 and less than 1.
prop.test ():
Compares proportions against hypothesized values. Alternately, tests whether underlying proportions are equal. Where x, n are vectors of counts of successes and trials respectively. The elements of n must be positive; those of x must be nonnegative and no greater than the corresponding values in n. Both vectors must have the same length. p is a vector of probabilities of success specified in the null hypothesis.
Example:
\#\# H0: The null hypothesis is that the four populations from which the patients were drawn have the same true proportion of smokers.
\#\# H1: The alternative is that this proportion is different in at least one of the populations.

```
smokers <- c( 83, 90, 129,70 )
patients <-c( 86, 93, 136, 82)
    prop.test(smokers, patients) # p=c(.25,.25,.25,.25)
```

possible output for prop.test () are:
$\left.\begin{array}{|ll|}\hline \text { statistic } & \text { Pearson's X-squared statistic } \\ \text { parameters } & \text { the degrees of freedom } \\ \text { p.value } & \text { the asymptotic p-value for the test. } \\ \text { conf.int } & \begin{array}{l}\text { a confidence interval for the true probability of success (1, 2 groups } \\ \text { only) }\end{array} \\ \text { estimate } & \begin{array}{l}\text { vector giving the sample proportions } x / n ; \\ \text { null.value } \\ \text { alternative }\end{array} \\ \text { method onabilities of success specified in null hypothesis. }\end{array} \quad \begin{array}{l}\text { character string giving the name of the method used, including "two.sided". } \\ \text { whether Yates' continuity correction was applied. }\end{array}\right\}$

Each of these can be accessed by \$"name".

