Statistical Inference for Counts and proportions

A) proportions parameter for one population Null Hypothesis H₀: p = p₀
Assumptions: random sample, large n and p is around .5.
R function:
binom.test (): Test hypothesis about ONE parameter p in a Binomial (n,p) model given x, the number of successes out of n trials.

binom.test(x, n, p=0.5, alternative ="two . sided") where x is number of successes, n is the number of the independent trials, p is the success probability to be tested.

	1 0
statistic	number of successes
parameters	number of trials.
p.value	the p-value.
null.value	null hypothesis value of the probability of success.
alternative	alternative hypothesis
method	the string "Exact binomial test".
data.name	a chararter vector describing the data used for the test.

Possible output for binom.test() are:

Each of these values can be accessed by \$"name".

 B) proportions parameters for two or more populations: Null Hypothesis H₀: p₁ = p₂ or H₀: p₁ = p₂ Assumptions: random independent samples, min (np, n(1-p)) >=5

R function:

prop.test(x, n, p, alternative = "two . sided", conf .
level= .95, correct=T)

x: a vector of counts of successes or a matrix with 2 columns

giving the counts of successes and failures, espectively. n: a vector of counts of trials; ignored if 'x' is a matrix. p: a vector of probabilities of success. The length of 'p' must be the same as the number of groups specified by 'x', and its elements must be greater than 0 and less than 1.

prop.test ():

Compares proportions against hypothesized values. Alternately, tests whether underlying proportions are equal. Where x, n are vectors of counts of successes and trials respectively. The elements of n must be positive; those of x must be nonnegative and no greater than the corresponding values in n. Both vectors must have the same length. p is a vector of probabilities of success specified in the null hypothesis.

Example:

H0: The null hypothesis is that the four populations from which the patients were drawn have the same true proportion of smokers.

H1: The alternative is that this proportion is different in at least one of the populations.

smokers <- c(83, 90, 129, 70) patients <- c(86, 93, 136, 82) prop.test(smokers, patients) # p=c(.25,.25,.25,.25)

possible output for prop.test () are:

statistic	Pearson's X-squared statistic
parameters	the degrees of freedom
p.value	the asymptotic p-value for the test.
conf.int	a confidence interval for the true probability of success (1, 2 groups only)
estimate	vector giving the sample proportions x / n;
null.value	probabilities of success specified in null hypothesis.
alternative	one of "greater", "less" or "two.sided".
method	character string giving the name of the method used, including whether Yates' continuity correction was applied.
data.name	a character string containing the actual names of the input vectors \boldsymbol{x} and \boldsymbol{n} , and of p if given.

Each of these can be accessed by \$ "name".